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Calculation of impact transition temperature 
of low density polyethylene from shift 
factor via a free volume approach 
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A relationship between the impact transition temperature Ti and the stress concentration 
factor Ks is derived. The relationship involves the temperature shift factor aT; in turn, a m 
depends on the free volume. In earlier work in this problem Zewi and Corneliussen [6] 
utilized the W - L - F  equation. Here a more direct relationship between a T and the free 
volume is applied. Satisfactory values of Ks corresponding to given T i are obtained for a 
wide temperature range; the range also includes temperatures below the glass transition 
point Tg. The opinion that a free volume exists between 0 K and Tg is upheld. 

1. Introduction 
Users of polymeric materials of all kinds have at 
least one common problem: the possibility of 
fracture. As a consequence, numerous papers and 
whole volumes (see for instance Kausch [1]) have 
been written on polymer fracture. In a somewhat 
different context, Jedlinski [2] stresses the con- 
nection between the usability of polymeric 
materials and the effects of temperature upon the 
properties of these materials. 

Methods of strengthening are more or less com- 
mon to all basic classes of engineering materials: 
metals, ceramics and polymers; see for instance 
Section 12.5 of Brostow [3]. For some time the 
ductile-brittle transition temperature has been 
used as an important parameter characterizing the 
mechanical behaviour of metals. At this tempera- 
ture both brittle and ductile behaviour is possible 
in samples of identical geometry. For polymers, 
however, a similar transition has attracted less 

attention. Bueche [4] has discussed the so-called 
"brittle temperature", but he noted that the value 
of this temperature depends on the experimental 
procedure used. Andrews [5] has provided a ~airly 
detailed, but only qualitative, discussion of the 
brittle-ductile transition. On the basis of experi- 
mental data Andrews has concluded that there are 
transition ranges (intervals of about 10K) rather 
than points. Only in 1979 did Zewi and Cornelius- 
sen [6] attempt to relate the relaxation of poly- 

meric chains to what they called the impact 
transition temperature. 

The impact transition temperature T i is defined 
as the temperature at which the response of a 
material changes from brittle to ductile. This 
resembles the usual ductile-brittle transition. The 
measurement, however, made under high-impact 
load conditions enables quite precise location of 
the temperature. That is, a single point and not a 
temperature interval is defined. It is believed on 
the basis of experimental results [7, 8] that the 
transition so measured represents a basic material 
property. 

The present work represents a continuation and 
an improvement of [6]. The problem has been 
re-examined essentially upholding the basic 
assumptions of Zewi and Corneliussen [6], but 
modifiying some elements in the reasoning. Since 
the resulting equations are different, values calcu- 
lated therefrom are also presented for the same 
low-density polyethylene which was treated in 
[6]. 

2. The Charpy impact test 
A convenient procedure for the determination of 
the impact transition temperature consists of 
performing the Charpy test. A specimen of definite 
size with a notch of known size is impacted at high 
velocity. The geometry of the test represents 
three-point bending: a rectangular bar resting 
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against two posts is struck midway between the 
supports. Details of the experimental procedure 
have been discussed by Zewi et al. [8]. Stress con- 
centration takes place at the notch; at the same 
time, the notch tip constitutes a constraint to 
plastic deformation. Let us denote the energy 
furnished in the test to the specimen by U0. The 
problem consists of analysing how this energy is 
expended. 

Before proceeding further, let us note that our 
parameter Uo is not related to a parameter repre- 
sented by the same symbol and used in the kinetic 
Korsukov [9] and used by Slutsker and collabora- 
tors [10] and by others. The Zhurkov-Korsukov 
parameter is a molecular property; as noted by 
Zaitsev and Razumovskaya [11] it is approxi- 
mately equal to one half of the dissociation 
energy. 

A part of the energy Uo "invested" by the 
hammer of the Charpy machine into the specimen 
certainty goes into breaking bonds in polymer 
molecules. Let us denote the energy so utilized by 
Ub, and the corresponding rate constant by Cb. 
At the same time, a part of the input energy goes 
into relaxation of macromolecular chains; denote 
this energy term by /Jr, and respective rate con- 
stant by % Take both bond rupture and molecular 
relaxation to be first-order processes. At any time, 
r, denote the unutilized energy by U, that is, this 
part of the input energy which did not go as yet 
into either of the two competitive processes. Thus 

u = U o - U b - U ~ .  (1) 

All parameters featured in Equation 1, except for 
Uo, are in general functions of time, r. Clearly 

U(O) = Uo. (2) 

Consider now the derivative dU[dr. Given the 
two first-order processes which bring about a 
decrease in U, then 

dU 
- (cb + c , ) u .  ( 3 )  

dr 

Integrating Equation 3 and remembering Equation 
2, then 

U = Uo e-(eb+cr)r. (4) 

Substituting Equation 4 into Equation 3 gives 

dU dUb dUr 
- ( 5 )  

dr dr dr 

dUb = cbUo e-(~b+Cr)r (6a) 
dr 
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and 
dUr - crUo e-(%*cd r. (6b) 
dr 

Integrating Equation 6a and again remembering 
Equation 2, then 

f b  - -  

Analogously 

u ~ -  

CbUo [ 1  - -  e - ( C b + c r ) r ] .  
C b + C r 

(7a) 

crUo [1 --e-(eb+er)r]. (7b) 
C b + C r 

Thus, for U(oo) = 0, separation of the original U0 
into U b and Ur components depends on the 
fraction % / ( %  + cr). Various consistency checks 
of the present set of equations can be easily made: 
for instance, direct differentiation of Equation 1 
produces Equation 5; summation of Equations 
7a and b reproduces Equation 1. 

3. Stress concentration factor and 
shift factor 

From Equations 7a and b we have immediately, 
for any temperature 

Ub Cb 
- ( 8 )  

Ur Cr"  

Since molecular relaxation rate depends on the 
temperature, in general the parameters in Equation 
8 depend on the material and also on the tempera- 
ture. The e b constant, however, is an exception: it 
can be reasonably assumed to be temperature- 
independent. 

Experiments on polyethylene reported by Zewi 
et al. [8] were made with singly-notched rectangu- 
lar bars. The tensile strength of such a specimen 
is generally characterized in terms of the stress 
concentration factor K s. According to Griffith 
[12,13] 

[hV 2 
K s = l + 2 1 7  J , (9) 

where h is the depth of the notch (the length of 
the major axis in an elliptical crack) and l is the 
radius of curvature at the end of the major axis. 
To relate K s to the parameters featured in 
Equation 8, the simplest possible assumption is 
made, namely, 

r 
% = % K  s , (10) 

where c~ is a material parameter independent of 
the temperature. 



Consider now the parameter c r. According to 
Equation 8, an increase in cr means that a larger 
share of the input energy U0 goes into Ur. When 
the temperature T increases, the relaxation is 
faster, that is, the cr parameter increases. Now 
introduce the shift factor, aT, defined by Ferry 
[141 

r/Tref Pref (11) 
aT - -  

~ref TP 

where r~ denotes viscosity, p denotes density, and 
the index ref represents a reference point. When T 
increases, aT decreases. Consequently, 

l 

Cr = c-!r (12) 
a T  

can be written where c~ is another material con- 
stant and is independent of the temperature; it 
might be equal to unity, but its exact value is 
immaterial for the following considerations. 

From Equations 10, 8 and 12, we now have 

e ub 
K s - , (13) 

aT Ur 
where t 

Cr 
c = -7. (14) 

eb 

In view of the definitions made at the beginning, it 
is only reasonable to assume that the ratio Ub/Ur 
at the impact transition temperature T~ is also a 
material constant. According to Equation 9, the 
value of K s depends on what has been done to the 
specimen, in terms of the parameters h and l. 
However, for every notch, as characterized by its 
K s value, there exists a single impact transition 
temperature. In other words, there exists a one-to- 
one correspondence between K i - K s ( T 0  and Ti. 
Thus 

] 
Ki = - -  (15) 

a~  

can be written, where f is also a constant, namely, 

Ub(Ti) 
f = c .----v---=, (16) Ur( ) 

The problem of predicting the polymer fracture 
now becomes that of calculation of the impact 
transition temperature T i for a given value of K s. 
Equation 15 tells us that for this we need to know 
the shift factor. Therefore, in the next section the 
problem of the temperature dependence of aT will 
be considered. 

4. Shift factor and free volume 
The most-often used formula which leads to an 
aT(T) dependence is the viscosity equation of 
Doolittle [15] 

in ~7 = l n A ' +  B (v -- v 0 (17) 
Vf 

A' and B are constants for a given material, v is the 
volume per molecule for nonpolymeric liquids 
while it is the volume per segment for polymers, 
v~ is the free volume, again per molecule or per 
polymeric segment. A problem which arises 
immediately is that of the definition of vv One 
such definition follows from the partition function 
of Flory [16, t7]. It is widely used in various 
applications of the Flory theory of the liquid state 
[16-19].  As discussed elsewhere [20], however, 
there is a variety of other definitions [20-25]. 
Another problem, sometimes closely connected 
with the preceding one, is that of the dependence 
of v and/or vf on the temperature; here once more 
we have a variety of relationships, including the 
volume-entropy-energy equation proposed again 
by Doolittle [26-29] .  In any case, Equation 17 
substituted into Equation 11 relates the shift 
factor to free volume. The result can be written in 
terms of v~, or else in terms of alternative and 
related quantities 

v* = v - v ~  (18) 
o r  

v 
~" = ~-~. (19) 

v* is called the hard-core volume, and ~" is the 
reduced volume. By using Equation 19, from 
Equations 11 and 17 

Vre f -- 1 \Tvmf ] 

(20) 

is obtained. The first right-hand-side term in Equa- 
tion 20 is, by definition, a constant, which we will 
call B'. The second term varies only slowly with 
temperature, and a reasonable approximation con- 
sists of neglecting its temperature dependence. 
Thus, 

A = B' + In [ ~/TrefVl (21) 
\ Tvre# 

and it can be assumed that 
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dA 
dT 0. (22) 

Approximate validity of Equation 22 will be 
checked by numerical calculations in the following 
section. Now 

B 
I n  a T = A + ~._--'--i. (23) 

Equation 23 represents the key aT(T) relation. 
The most widely used explicit aT(T) formula has 
been obtained by Williams, Landel and Ferry [30] 
by assuming 

[1 ], 
= -- ~f ( r - -  r ~ )  , (24) 

'0re f 

where a, is a constant. Substitution of Equation 
24 into Equation 23 gives the Williams-Landel- 
Ferry (W-L-F)  equation 

- 

Ot T - -  

(25) 
Equation 25 gives reasonable results above the 
glass transition temperature, Tg, up to (Tg+ 
100)K. The best results are obtained at about (Tg + 
50)K. It should be observed that Equation 25 
blows up when ( 1 -  v;ler = ( T ~ f -  T). More 
importantly, there exists no basis for Equation 24. 
Ferry [14] notes himself that Equation 24 cer- 
tainly does not hold below Tg. 

Under the circumstances, it would be more 
satisfactory to have, instead of Equation 25, an 
aT(T) formula operative below as well as above Tg. 
Therefore, we return now to Equation 23. Remem- 
ber that Equation 23 is an approximation; it 
results from Equations 17 and 22. But the 
reliability of Equation 23 has now been proven by 
many calculations. The relative success of the 
W - L - F  formula, Equation 25, cannot be traced to 
Equation 24, so it clearly relies on Equation 23. 
Thus, the problem reduces to finding a suitable 
~(T) formula to be used in Equation 23. 

As noted above, there is a variety of vf defi- 
nitions and of g(T) relationships. Zoller [31 ] has 
compared two g(T) equations for polymer melts, 
namely that of Simha and Somcynsky [21] and of 
Sanchez and Lacombe [32, 33]. He has concluded 
that the former is better. Since a modification of 
the Simha-Somcynsky formula is applicable to 
solid polymers too, we have decided to use it. In 
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the reduced form it reads 

- - =  _ 2y t35~ [1 -- 2-1/6y(y~-l /31-1 -t ~(y~)Z 

[1.011 1.2045] (26) 

w h e r e  (1 ZY) is the fraction of holes; the reduced 
pressure P and temperature T are defined by 
analogues of Equation 19. The hard-core or 
scaling parameters are 

T* = s(z -- 2). e_e - (27a) 
and c k 

6 
P* = s ( z - -  2)" . (27b) 

S73" 

s is the number of segments per chain, 3e rep- 
resents the number of volume-dependent external 
degrees of freedom, the ratio c/s is known as the 
flexibility ratio, z is the co-ordination number, 
e is the potential energy at the minimum and k is 
the Boltzmann constant. 

Equation 26 is not very convenient for practical 
calculations. There exists, however, an inter- 
polation formula [34] 

O" = 0.9299 + 0.4478T + 37.33~ 2 -- 327.3T 3 

(28) 

which represents Equation 26 well, and is applic. 
able in particular to polyethylene in the tempera. 
ture range for which the experiments have been 
reported in [6]. Equation 28 has been devised for 
crystals and includes corrections for anharmonicity 
(in the temperature range of interest such cor. 
rections are not significant in any case). There 
exists a v(T) relationship for the melt which has 
been extrapolated to the amorphous solid range; 
Fig. 1 in [34] shows, however, that the extra- 
polation produces considerable errors. Thus, the 
use of Equation 28 for the solid, even though it is 
not completely crystalline, represents a much 
better approach. In the following section the 
calculated results obtained by the substitution of 
Equation 28 into Equation 23 is presented. 

5. Calculations for polyethylene 
To test the validity of equations developed in the 
present paper, one can either calculate the stress 
concentration factors Ki for a given set of impact 
transition temperatures Ti, or else calculate the 
temperatures Ti for a number of Ki values. Since 
Ki is a directly determinable quantity for any 
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Figure 1 Experimental [6] and calculated values of the 
stress concentration factors K i corresponding to impact 
transition temperatures T i. 

specimen, rather than average over a number of  
specimens, it was decided to follow the first route. 

For  each impact transition temperature of  low- 
density polyethylene reported by Zewi and 
Corneliussen [6] the corresponding ~ value from 
Equation 28 has been calculated. The hard-core 
temperature T * = 7 9 5 6 K  was taken from [34]. 
The necessary relationship between K i and ~ is 
obtained by substituting Equation 23 into 
Equation 15 ; the result can be writ ten as 

K i = F e -IB/(g-1)l , (29) 

where the new constant F is 

f 
F -  eA. (30) 

Since Equation 29 involves two constants, we 
have simply solved a pair of  such equations, 
taking the experimental  values of  Ki for T i = 269 
and 293K.  The results are F = 0 . 1 2 3 9  and 

B = 0.1053. A slightly bet ter  agreement with the 
experiment could conceivably have been obtained 
by extracting F and B from all measured values. 
This, however, would have detracted from the 
fact that  data for a pair of  temperatures are 
sufficient to make predictions for an arbitrary 
temperature.  Values of  Ki calculated from 
Equation 29 are listed in Table I together with the 
experimental  values for all Ti parameters reported 
in [6]. The reduced volumes, ~, used in the calcu- 
lations are tabulated too, as well as the factor 
( g - -  1) -1 in Equation 23. For  two temperatures,  
285 and 288K,  there are two different experi- 

mental K i values; this enables assessment of the 
scatter of  the experimental  points. Given this 
scatter, possibly a better  perspicuity for the 
judgement of  the theory can be provided by  a 
graphical representation. Therefore, experimental  
as well as calculated Ki values are shown as a 
function of  the impact transition temperature in 

Fig. 1. Clearly, the theory agrees with the experi- 
ment  within the limits of  experimental accuracy. 

Already the key conclusion has been reached, 
but  on the way to it we have promised to check 
certain things. One of  them was the validity of  
the assumption of  Equation 22. To do this, take 
the hard-core parameters as the reference ones; 
as noted by Ferry  [14], there are no limitations on 
the choice of  the reference state. Then Equation 
21 can be rewitten as 

A = B ' +  ln-~--. (31) 

With the same T* as before, and with ~" values 
listed in the second column of  Table I, the second 
term on the right-hand-side of  Equation 3 i  is 
equal to 3.748 at 749 K and to 3.282 to 293 K. 

TABLE I Impact transiton temperatures, Ti, and corresponding stress concentration factors, Ki, of low-density poly- 
ethylene , 

Ti(K ) ~" 1 K i 
(Equation 28) ~- -  1 Experimental Calculated Present work W - L - F  

179 0.9552 -- 22.32 1.0 1.3 2.6 - 
269 0.9751 --40.16 8.5 8.5 16.7 1 
273 0.9760 -- 41.67 9.4 10.0 19.6 2.9 
285 0.9787 -- 46.95 12.6 17.4 34.1 24.0 
285 - - 11.9 . . . .  
288 0.9795 -- 48.78 19.4 21.1 41.3 36.0 
288 - - 1 6 . 0  - - - 

2 8 9  0.9797 -- 49.26 22.2 22.2 43.5 41.0 
290 0.9799 -- 49.75 24.5 23.4 45.9 46.0 
291 0.9803 -- 50.76 27.0 26.0 51.0 51.0 
293 0.9807 -- 51.81 29.0 29.0 56.8 63.0 
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This can be contrasted with considerable variations 
of ( ~ -  1) in the same temperature interval, as 
seen in the third column of Table I. Given the 
present accuracy of the experiments, as seen in 
Fig. 1, the validity of the assumption of Equation 
22 is thus upheld. Of course, any time the experi- 
mental accuracy improves, Equation 22 can be 
abandoned and ln(~/T) easily calculated. 

We have also promised to make a comparison 
with the calculations described in [6]. The latter 
were not made in terms of Ki, but of a function R, 
dependent on Ti and defined so that the ratio Ki/R 
is a constant. Denoting this constant by c' 

K i = c'R (32) 

and, using Equation 15, 

f 1 
~ ~  �9 R c' (33) 

aT i 
Disregarding for the moment (but see below) 
aberrations at the two lowest temperatures for 
which Ki/R ratios are reported in Table I of [6] 
the average value of c' is 0.51. Thus, from 
Equation 32, R ~-1.96Ki, and these values of R 
are listed in the penultimate column of Table I. In 
the last column of the table the R values from [6] 
are reported, obtained from Equation 25, the 
W - L - F  equation. There is reasonable agreement 
at the highest temperatures between the two 
sets of R values, but the agreement disappears 
rapidly with a temperature decrease. As noted by 
Zewi and Corneliussen [6], the constancy of their 
Ki/R ratio is dramatically lost at Ti = 273K. 
The lowest experimental temperature of 179K 
is far below the glass transition point, and any pro- 
cedure which employs the W-L--F equation is 
useless. By contrast, our procedure is still applic- 
able. 

6. Discussion 
It is recommended that the shift factor be calcu- 
lated from Equation 23 and not from the W-~L-F 
equation, Equation 25. The use of Equation 23 
involves a relationship between reduced volume, v, 
and the temperature, T, or else between free 
volume, vf, and T. A fairly satisfactory ~(T) 
formula is Equation 26 resulting from the hole 
theory of Simha and Somcynsky [21]; a con- 
venient consequence of Equation 26 is the inter- 
polation Equation 28. The main drawback of the 
W - L - F  equation is the implication that molecular 
relaxations are entirely frozen below a certain tern- 

perature. Arguments against the complete freeze-in 
below the glass transition temperature have been 
discussed by Simha [35]. The fact that our pro- 
cedure for calculating K i is operative below Tg is 
thus significant. Substantial molecular mobility at 
T~ itself was found by Seigman and Geil [36] for 
crystals of polycarbonate and by Lam and Geil 
[37] for linear polyethylene. Discussing a qualita- 

�9 tive model of the freezing-in process, Mor~se- 
S6gu6la and her colleagues [38] stress that the 
temperature range of the process depends on the 
cooling rate. The same Montreal group [38] also 
reports the existence of two glass transition tem- 
peratures, for the soft and hard phases, in 
styrene-isoprene di-block co.polymers. 

Satisfactory relationships between the stress 
concentration factor and the impact transition 
temperature of solid polymers have been developed 
here. Each of these parameters can be calculated 
from the other. Two constants are needed if the 
shift factor, aT, as a function of temperature is 
unknown. Only one material constant is necessary 
if the aT(T ) relationship is provided. Further 
implications of the present results for the problem 
of polymer fracture are being explored. Among 
other things, we would like also to obtain more 
experimental data, for materials other than poly- 
ethylene in particular. 

In a way, the present work explores the tip of 
an iceberg. Several further problems are involved: 
free volume changes not only with temperature 
but also with pressure. Fillers and Tschoegl [39] 
have obtained an important generalization of the 
W - L - F  equation, Equation 25, to pressure 
changes. That is, they have a formula for the 
general shift factor, aT.p, which depends on both 
external parameters. The FiUers-Tschoegl formula 
can be reduced to the usual W - L - F  equation, 
Equation 25, or else to its pressure analogue 
proposed by Ferry and Stratton [40]. In practical 
calculations, Tshoegl and his school [39, 41] use 
the relationship between volume and pressure sug- 
gested by Murnaghan [42]. Also often used is 
the empirical relationship between volume and 
pressure proposed by Tait [43]. The Murnaghan 
and the Tait equations give remits fairly close to 
each other; possibly a better relationship between 
volume and pressure than either of these two can 
be found, and then used in calculations of the 
generalized shift factor, at, P, introduced by 
Fillers and Tschoegl. We have a reliable relation 
between the isothermal compressibility of liquids 
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(including polymeric ones) and the temperature 
[44]. A generalization of this relationship to des- 
cribe compression of solid polymers should be pos- 
sible. 

Incidentally, there seems to be a common 
belief, voiced for instance by Ferry [14], that the 
B constant in the Doolittle equation, Equation 17, 
is close to unity. Fillers and Tschoegl [39] stress 
that this is not the case. For four materials studied 
by them the values of B vary between 0.175 for 
Viton B (a co-polymer of vinylidene fluoride and 
hexafluoropropylene, lightly f'flled with carbon 
black) and 0.608 for PVC. Their conclusion is con- 
firmed by the value of B = 0.1053 reported here 
for polyethylene. 

The shift factor can be related to even more 
parameters. Kenner and Knauss [45, 46] have 
studied the creep compliance of polyvinyl acetate 
in shear as a function of temperature and also of 
absorbed moisture. They have found that water 
concentration affects the time scale of creep 
in a similar manner to temperature. That is, a 
concentration.dependent shift factor exists too, 
and can be evaluated. 

To conclude, let us return to the problem of 
molecular relaxations, as discussed in the beginning 
of the present section; below the glass transition 
temperature Tg in particular. We are not saying 
that molecular motions below Tg are strong ones: 
see the dramatic fall of the parameter R in the 
penultimate column of Table I between 269 and 
179 K. It is simply stressed that a certain amount 
of free volume still exists, except of course at 
T = 0 K .  
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